2-Deoxy-D-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism.

نویسندگان

  • Xiao Lin
  • Fanjie Zhang
  • C Matthew Bradbury
  • Aradhana Kaushal
  • Ling Li
  • Douglas R Spitz
  • Rebecca L Aft
  • David Gius
چکیده

Exposure to ionizing radiation is believed to cause cell injury via the production of free radicals that are thought to induce oxidative damage. It has been proposed that exposure to agents that enhance oxidative stress-induced injury by disrupting thiol metabolism may sensitize cells to the cytotoxic effects of ionizing radiation. Recently, it has been shown that glucose deprivation selectively induces cell injury in transformed human cells via metabolic oxidative stress (J. Biol. Chem., 273: 5294-5299; Ann. N.Y. Acad. Sci., 899: 349-362), resulting in profound disruptions in thiol metabolism. Because 2-deoxy-D-glucose (2DG) is a potent inhibitor of glucose metabolism thought to mimic glucose deprivation in vivo, the hypothesis that exposure to 2DG might be capable of inducing radiosensitization in transformed cells via perturbations in thiol metabolism was tested. When HeLa cells were exposed to 2DG (4-10 mM) for 4-72 h, cell survival decreased (20-90%) in a dose- and time-dependent fashion. When HeLa cells were treated with 6 mM 2DG for 16 h before ionizing radiation exposure, radiosensitization was observed with a sensitizer enhancement ratio of 1.4 at 10% isosurvival. Treatment with 2DG was also found to cause decreases in intracellular total glutathione content (50%). Simultaneous treatment with the thiol antioxidant N-acetylcysteine (NAC; 30 mM) protected HeLa cells against the cytotoxicity and radiosensitizing effects of 2DG, without altering radiosensitivity in the absence of 2DG. Furthermore, treatment with NAC partially reversed the 2DG-induced decreases in total glutathione content, as well as augmented intracellular cysteine content. Finally, the cytotoxicity and radiosensitizing effects of 2DG were more pronounced in v-Fos-transformed versus nontransformed immortalized rat cells, and this radiosensitization was also inhibited by treatment with NAC. These results support the hypothesis that exposure to 2DG causes cytotoxicity and radiosensitization via a mechanism involving perturbations in thiol metabolism and allows for the speculation that these effects may be more pronounced in transformed versus normal cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruptions in Thiol Metabolism Radiosensitization in Tumor Cells Is Mediated via 2-Deoxy-d-Glucose-induced Cytotoxicity and Updated Version

Exposure to ionizing radiation is believed to cause cell injury via the production of free radicals that are thought to induce oxidative damage. It has been proposed that exposure to agents that enhance oxidative stressinduced injury by disrupting thiol metabolism may sensitize cells to the cytotoxic effects of ionizing radiation. Recently, it has been shown that glucose deprivation selectively...

متن کامل

Inhibition of glutamate cysteine ligase activity sensitizes human breast cancer cells to the toxicity of 2-deoxy-D-glucose.

It has been hypothesized that cancer cells increase glucose metabolism to protect against metabolic fluxes of hydroperoxides via glutathione-dependent peroxidases. 2-Deoxy-D-glucose, inhibits glucose metabolism and has been shown to cause cytotoxicity in cancer cells that is partially mediated by disruptions in thiol metabolism. In the current study, human breast cancer cells were continuously ...

متن کامل

Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles

Introduction: A main choice for cancer treatment is radiotherapy. But, the radiotherapy disadvantage is damages caused by radiation given to normal tissues/organs surrounding cancer. One way to avoid this is via increasing radiosensitization of cancer cells. Gold nanoparticles (GNPs) have shown sensitizing effect on cancer cells by enhancing their absorbed dose. Unlike earlier ...

متن کامل

p53 is an important factor for the radiosensitization effect of 2-deoxy-D-glucose.

Metabolic change in cancer cells by preferential production of energy through glycolysis is a well-documented characteristic of cancer. However, whether inhibition of glycolysis will enhance the efficacy of radiation therapy is a matter of debate. In this study which uses lung cancer as the model, we demonstrate that the improvement of radiotherapy by 2-deoxy-D-glucose (2DG) is p53-dependent. B...

متن کامل

Efficacy of combining GMX1777 with radiation therapy for human head and neck carcinoma.

PURPOSE Rapidly metabolizing tumor cells have elevated levels of nicotinamide phosphoribosyltransferase, an enzyme involved in NAD(+) biosynthesis, which serves as an important substrate for proteins involved in DNA repair. GMX1777, which inhibits nicotinamide phosphoribosyltransferase, was evaluated in two human head and neck cancer models in combination with radiotherapy. EXPERIMENTAL DESIG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 63 12  شماره 

صفحات  -

تاریخ انتشار 2003